Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Curr Rev Clin Exp Pharmacol ; 19(2): 163-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37403385

RESUMO

The 5-HT syndrome in rats is composed of head weaving, body shaking, forepaw treading, flat body posture, hindlimb abduction, and Straub tail. The importance of the brainstem and spinal cord for the syndrome is underlined by findings of 5,7-dihydroxytryptamine (5,7-DHT)-induced denervation supersensitivity in response to 5-HT-stimulant drugs. For head weaving and Straub tail, supersensitivity occurred when the neurotoxin was injected into the cisterna magna or spinal cord, for forepaw treading in cisterna magna, and for hindlimb abduction in the spinal cord. Although 5,7- DHT-related body shaking increased in the spinal cord, the sign decreased when injected into the striatum, indicating the modulatory influence of the basal ganglia. Further details on body shaking are provided by its reduced response to harmaline after 5-HT depletion caused by intraventricular 5,7-DHT, electrolytic lesions of the medial or dorsal raphe, and lesions of the inferior olive caused by systemic injection of 3-acetylpyridine along with those found in Agtpbp1pcd or nr cerebellar mouse mutants. Yet the influence of the climbing fiber pathway on other signs of the 5-HT syndrome remains to be determined.


Assuntos
D-Ala-D-Ala Carboxipeptidase Tipo Serina , Serotonina , Ratos , Animais , Camundongos , Serotonina/farmacologia , Ratos Endogâmicos , Tremor/induzido quimicamente , Tronco Encefálico/metabolismo , Gânglios da Base/metabolismo , Proteínas de Ligação ao GTP/efeitos adversos , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
2.
J Cell Mol Med ; 28(2): e18031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37937809

RESUMO

Approximately 10%-15% of couples worldwide are infertile, and male factors account for approximately half of these cases. Teratozoospermia is a major cause of male infertility. Although various mutations have been identified in teratozoospermia, these can vary among ethnic groups. In this study, we performed whole-exome sequencing to identify genetic changes potentially causative of teratozoospermia. Out of seven genes identified, one, ATP/GTP Binding Protein 1 (AGTPBP1), was characterized, and three missense changes were identified in two patients (Affected A: p.Glu423Asp and p.Pro631Leu; Affected B: p.Arg811His). In those two cases, severe sperm head and tail defects were observed. Moreover, AGTPBP1 localization showed a fragmented pattern compared to control participants, with specific localization in the neck and annulus regions. Using murine models, we found that AGTPBP1 is localized in the manchette structure, which is essential for sperm structure formation. Additionally, in Agtpbp1-null mice, we observed sperm head and tail defects similar to those in sperm from AGTPBP1-mutated cases, along with abnormal polyglutamylation tubulin and decreasing △-2 tubulin levels. In this study, we established a link between genetic changes in AGTPBP1 and human teratozoospermia for the first time and identified the role of AGTPBP1 in deglutamination, which is crucial for sperm formation.


Assuntos
Infertilidade Masculina , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Teratozoospermia , Humanos , Masculino , Animais , Camundongos , Teratozoospermia/genética , Teratozoospermia/metabolismo , Tubulina (Proteína)/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Cabeça do Espermatozoide/metabolismo , Flagelos/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Mutação , Proteínas de Ligação ao GTP/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
3.
World J Microbiol Biotechnol ; 39(10): 277, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37568013

RESUMO

Vibrio natriegens is a fast-growing, non-pathogenic marine bacterium with promising features for biotechnological applications such as high-level recombinant protein production or fast DNA propagation. A remarkable short generation time (< 10 min), robust proteosynthetic activity and versatile metabolism with abilities to utilise wide range of substrates contribute to its establishment as a future industrial platform for fermentation processes operating with high productivity.D,D-carboxypeptidases are membrane-associated enzymes involved in peptidoglycan biosynthesis and cell wall formation. This study investigates the impact of overexpressed D,D-carboxypeptidases on membrane integrity and the increased leakage of intracellular proteins into the growth medium in V. natriegens. Our findings confirm that co-expression of these enzymes can enhance membrane permeability, thereby facilitating the transport of target proteins into the extracellular environment, without the need for secretion signals, tags, or additional permeabilization methods. Using only a single step IMAC chromatography, we were able to purify AfKatG, MDBP or Taq polymerase in total yields of 117.9 ± 56.0 mg/L, 36.5 ± 12.9 mg/L and 26.5 ± 6.0 mg/L directly from growth medium, respectively. These results demonstrate the feasibility of our V. natriegens based system as a broadly applicable extracellular tag-less recombinant protein producer.


Assuntos
D-Ala-D-Ala Carboxipeptidase Tipo Serina , Vibrio , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Permeabilidade , Vibrio/metabolismo , Carboxipeptidases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(6): 1002-1009, 2023 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-37439173

RESUMO

OBJECTIVE: To explore the interaction between Tubulin beta 4B class IVb (TUBB4B) and Agtpbp1/cytosolic carboxypeptidase- like1 (CCP1) in mouse primary spermatocytes (GC-2 cells) and the role of TUBB4B in regulating the development of GC-2 cells. METHODS: Lentiviral vectors were used to infect GC-2 cells to construct TUBB4B knockdown and negative control (NC-KD) cells. The stable cell lines with TUBB4B overexpression (Tubb4b-OE) and the negative control (NC-OE) cells were screened using purinomycin. RT-qPCR and Western blotting were used to verify successful cell modeling and explore the relationship between TUBB4B and CCP1 expressions in GC-2 cells. The effects of TUBB4B silencing and overexpression on the proliferation and cell cycle of GC-2 cells were evaluated using CCK8 assay and flow cytometry. The signaling pathway proteins showing significant changes in response to TUBB4B silencing or overexpression were identified using Western blotting and immunofluorescence assay and then labeled for verification at the cellular level. RESULTS: Both TUBB4B silencing and overexpression in GC-2 cells caused consistent changes in the mRNA and protein expressions of CCP1 (P < 0.05). Similarly, TUBB4B expression also showed consistent changes at the mRNA and protein after CCP1 knockdown and restoration (P < 0.05). TUBB4B knockdown and overexpression had no significant effect on proliferation rate or cell cycle of GC-2 cells, but caused significant changes in the key proteins of the nuclear factor kappa-B (NF-κB) signaling pathway (p65 and p-p65) and the mitogen-activated protein kinase (MAPK) signaling pathway (ErK1/2 and p-Erk1/2) (P < 0.05); CCP1 knockdown induced significant changes in PolyE expression in GC-2 cells (P < 0.05). CONCLUSIONS: TUBB4B and CCP1 interact via a mutual positive regulation mechanism in GC-2 cells. CCP-1 can deglutamize TUBB4B, and the latter is involved in the regulation of NF-κB and MAPK signaling pathways in primary spermatocytes.


Assuntos
NF-kappa B , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Espermatócitos , Tubulina (Proteína) , Animais , Masculino , Camundongos , Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Transdução de Sinais , Tubulina (Proteína)/genética
5.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982413

RESUMO

The cytosolic carboxypeptidase (CCP) 1 protein, encoded by CCP1, is expressed in cerebellar Purkinje cells (PCs). The dysfunction of CCP1 protein (caused by CCP1 point mutation) and the deletion of CCP1 protein (caused by CCP1 gene knockout) all lead to the degeneration of cerebellar PCs, which leads to cerebellar ataxia. Thus, two CCP1 mutants (i.e., Ataxia and Male Sterility [AMS] mice and Nna1 knockout [KO] mice) are used as disease models. We investigated the cerebellar CCP1 distribution in wild-type (WT), AMS and Nna1 KO mice on postnatal days (P) 7-28 to investigate the differential effects of CCP protein deficiency and disorder on cerebellar development. Immunohistochemical and immunofluorescence studies revealed significant differences in the cerebellar CCP1 expression in WT and mutant mice of P7 and P15, but no significant difference between AMS and Nna1 KO mice. Electron microscopy showed slight abnormality in the nuclear membrane structure of PCs in the AMS and Nna1 KO mice at P15 and significant abnormality with depolymerization and fragmentation of microtubule structure at P21. Using two CCP1 mutant mice strains, we revealed the morphological changes of PCs at postnatal stages and indicated that CCP1 played an important role in cerebellar development, most likely via polyglutamylation.


Assuntos
Ataxia Cerebelar , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Animais , Masculino , Camundongos , Ataxia/genética , Ataxia Cerebelar/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Células de Purkinje/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361749

RESUMO

Nna1/CCP1 is generally known as a causative gene for a spontaneous autosomal recessive mouse mutation, Purkinje cell degeneration (pcd). There is enough evidence that the cytosolic function of the zinc carboxypeptidase (CP) domain at the C-terminus of the Nna1 protein is associated with cell death. On the other hand, this molecule's two nuclear localization signals (NLSs) suggest some other functions exist. We generated exon 3-deficient mice (Nna1N KO), which encode a portion of the N-terminal NLS. Despite the frameshift occurring in these mice, there was an expression of the Nna1 protein lacking the N-terminal side. Surprisingly, the pcd phenotype did not occur in the Nna1N KO mouse. Behavioral analysis revealed that they were less anxious when assessed by the elevated plus maze and the light/dark box tests compared to the control. Furthermore, they showed impairments in context-dependent and sound stimulus-dependent learning. Biochemical analysis of Nna1N KO mice revealed a reduced level of the AMPA-type glutamine receptor GluA2 in the hippocampal synaptosomal fraction. In addition, the motor protein kinesin-1, which transports GluA2 to dendrites, was also decreased. These results indicate that Nna1 is also involved in emotion and memory learning, presumably through the trafficking and expression of synaptic signaling molecules, besides a known role in cell survival.


Assuntos
Células de Purkinje , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Camundongos , Animais , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Sobrevivência Celular/genética , Proteínas de Ligação ao GTP/metabolismo , Degeneração Neural/metabolismo , Emoções
7.
Commun Biol ; 5(1): 107, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115684

RESUMO

The peptidoglycan (PG) cell wall provides shape and structure to most bacteria. There are two systems to build PG in rod shaped organisms: the elongasome and divisome, which are made up of many proteins including the essential MreB and PBP2, or FtsZ and PBP3, respectively. The elongasome is responsible for PG insertion during cell elongation, while the divisome is responsible for septal PG insertion during division. We found that the main elongasome proteins, MreB and PBP2, can be inhibited without affecting growth rate in a quorum sensing-independent density-dependent manner. Before cells reach a particular cell density, inhibition of the elongasome results in different physiological responses, including intracellular vesicle formation and an increase in cell size. This inhibition of MreB or PBP2 can be compensated for by the presence of the class A penicillin binding protein, PBP1B. Furthermore, we found this density-dependent growth resistance to be specific for elongasome inhibition and was consistent across multiple Gram-negative rods, providing new areas of research into antibiotic treatment.


Assuntos
Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Contagem de Células , Cefalexina/farmacologia , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Tioureia/administração & dosagem , Tioureia/análogos & derivados , Tioureia/farmacologia
8.
Gene ; 809: 146001, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34637898

RESUMO

The function of the Agtpbp1 gene has mainly been delineated by studying Agtpbp1pcd (pcd) mutant mice, characterized by losses in cerebellar Purkinje and granule cells along with degeneration of retinal photoreceptors, mitral cells of the olfactory bulb, thalamic neurons, and alpha-motoneurons. As a result of cerebellar degeneration, cerebellar GABA and glutamate concentrations in Agtpbp1pcd mutants decreased while monoamine concentrations increased. The salient behavioral phenotypes include cerebellar ataxia, a loss in motor coordination, and cognitive deficits. Similar neuropathogical and behavioral profiles have been described in childhood-onset human subjects with biallelic variants of AGTPBP1, including cerebellar ataxia and hypotonia.


Assuntos
Cerebelo/fisiologia , Proteínas de Ligação ao GTP/genética , Doenças Neurodegenerativas/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Animais , Cerebelo/citologia , Cricetinae , Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos Mutantes , Doenças Neurodegenerativas/genética , Células de Purkinje/patologia , Células de Purkinje/fisiologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Ovinos
9.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769489

RESUMO

Ochratoxin A (OTA) is toxic to animals and threatens food safety through residues in animal tissues. A novel degrading strain Bacillus subtilis ANSB168 was isolated and further investigated. We cloned d-alanyl-d-alanine carboxypeptidase DacA and DacB from ANSB168 and over-expressed them in Escherichia coli Rosetta (DE3). Then, we characterized the OTA degradation mechanism of DacA and DacB, which was degrading OTA into OTα. A total of 45 laying hens were divided into three equal groups. The control group was fed basal feed, and other groups were administered with OTA (250 µg/kg of feed). A freeze-dried culture powder of ANSB168 (3 × 107 CFU/g, 2 kg/T of feed) was added to one of the OTA-fed groups for 28 days from day one of the experiment. We found that OTA significantly damaged the kidney and liver, inducing inflammation and activating the humoral immune system, causing oxidative stress in the layers. The ANSB168 bioproduct was able to alleviate OTA-induced kidney and liver damage, relieving OTA-induced inflammation and oxidative stress. Overall, DacA and DacB derived from ANSB168 degraded OTA into OTα, while the ANSB168 bioproduct was able to alleviate damages induced by OTA in laying hens.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/farmacologia , Contaminação de Alimentos/prevenção & controle , Inflamação/prevenção & controle , Ocratoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Ração Animal/análise , Ração Animal/toxicidade , Animais , Bloqueadores dos Canais de Cálcio/toxicidade , Galinhas , Modelos Animais de Doenças , Feminino , Contaminação de Alimentos/análise , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/patologia
10.
J Biol Chem ; 297(4): 101188, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34529975

RESUMO

Resistance to the extended-spectrum cephalosporin ceftriaxone in the pathogenic bacteria Neisseria gonorrhoeae is conferred by mutations in penicillin-binding protein 2 (PBP2), the lethal target of the antibiotic, but how these mutations exert their effect at the molecular level is unclear. Using solution NMR, X-ray crystallography, and isothermal titration calorimetry, we report that WT PBP2 exchanges dynamically between a low-affinity state with an extended ß3-ß4 loop conformation and a high-affinity state with an inward ß3-ß4 loop conformation. Histidine-514, which is located at the boundary of the ß4 strand, plays an important role during the exchange between these two conformational states. We also find that mutations present in PBP2 from H041, a ceftriaxone-resistant strain of N. gonorrhoeae, increase resistance to ceftriaxone by destabilizing the inward ß3-ß4 loop conformation or stabilizing the extended ß3-ß4 loop conformation to favor the low-affinity drug-binding state. These observations reveal a unique mechanism for ceftriaxone resistance, whereby mutations in PBP2 lower the proportion of target molecules in the high-affinity drug-binding state and thus reduce inhibition at lower drug concentrations.


Assuntos
Ceftriaxona/química , Farmacorresistência Bacteriana , Neisseria gonorrhoeae/enzimologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Substituição de Aminoácidos , Sítios de Ligação , Mutação de Sentido Incorreto , Neisseria gonorrhoeae/genética , Estrutura Secundária de Proteína , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
11.
Nat Commun ; 12(1): 2775, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986273

RESUMO

The pathway for the biosynthesis of the bacterial cell wall is one of the most prolific antibiotic targets, exemplified by the widespread use of ß-lactam antibiotics. Despite this, our structural understanding of class A penicillin binding proteins, which perform the last two steps in this pathway, is incomplete due to the inherent difficulty in their crystallization and the complexity of their substrates. Here, we determine the near atomic resolution structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic. PBP1b, in its apo form, is seen to exhibit a distinct conformation in comparison to Moenomycin-bound crystal structures. The work herein paves the way for the use of cryoEM in structure-guided antibiotic development for this notoriously difficult to crystalize class of proteins and their complex substrates.


Assuntos
Antibacterianos/farmacologia , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , beta-Lactamas/farmacologia , Acetilglucosamina/química , Aldeídos/química , Microscopia Crioeletrônica , Ácidos Murâmicos/química , Oligossacarídeos/farmacologia , Peptidoglicano/biossíntese , Conformação Proteica , Domínios Proteicos/fisiologia
12.
Mol Microbiol ; 116(1): 329-342, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660879

RESUMO

The integrity of the cell envelope of E. coli relies on the concerted activity of multi-protein machineries that synthesize the peptidoglycan (PG) and the outer membrane (OM). Our previous work found that the depletion of lipopolysaccharide (LPS) export to the OM induces an essential PG remodeling process involving LD-transpeptidases (LDTs), the glycosyltransferase function of PBP1B and the carboxypeptidase PBP6a. Consequently, cells with defective OM biogenesis lyse if they lack any of these PG enzymes. Here we report that the morphological defects, and lysis associated with a ldtF mutant with impaired LPS transport, are alleviated by the loss of the predicted OM-anchored lipoprotein ActS (formerly YgeR). We show that ActS is an inactive member of LytM-type peptidoglycan endopeptidases due to a degenerated catalytic domain. ActS is capable of activating all three main periplasmic peptidoglycan amidases, AmiA, AmiB, and AmiC, which were previously reported to be activated only by EnvC and/or NlpD. Our data also suggest that in vivo ActS preferentially activates AmiC and that its function is linked to cell envelope stress.


Assuntos
Membrana Externa Bacteriana/fisiologia , Carboxipeptidases/metabolismo , Endopeptidases/metabolismo , Escherichia coli/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Carboxipeptidases/genética , Membrana Celular/fisiologia , Parede Celular/metabolismo , Endopeptidases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Lipopolissacarídeos/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Plasmídeos/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Estresse Fisiológico/fisiologia
13.
Elife ; 102021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33625355

RESUMO

Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as ß-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin-binding proteins (PBPs) are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here, we developed a novel Förster resonance energy transfer-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high-throughput screening for new antimicrobials.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano/biossíntese , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
14.
Biochem J ; 478(1): 41-59, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33196080

RESUMO

Flocculation has been recognized for hundreds of years as an important phenomenon in brewing and wastewater treatment. However, the underlying molecular mechanisms remain elusive. The lack of a distinct phenotype to differentiate between slow-growing mutants and floc-forming mutants prevents the isolation of floc-related gene by conventional mutant screening. To overcome this, we performed a two-step Escherichia coli mutant screen. The initial screen of E. coli for mutants conferring floc production during high salt treatment yielded a mutant containing point mutations in 61 genes. The following screen of the corresponding single-gene mutants identified two genes, mrcB, encoding a peptidoglycan-synthesizing enzyme and cpxA, encoding a histidine kinase of a two-component signal transduction system that contributed to salt tolerance and flocculation prevention. Both single mutants formed flocs during high salt shock, these flocs contained cytosolic proteins. ΔcpxA exhibited decreased growth with increasing floc production and addition of magnesium to ΔcpxA suppressed floc production effectively. In contrast, the growth of ΔmrcB was inconsistent under high salt conditions. In both strains, flocculation was accompanied by the release of membrane vesicles containing inner and outer membrane proteins. Of 25 histidine kinase mutants tested, ΔcpxA produced the highest amount of proteins in floc. Expression of cpxP was up-regulated by high salt in ΔcpxA, suggesting that high salinity and activation of CpxR might promote floc formation. The finding that ΔmrcB or ΔcpxA conferred floc production indicates that cell envelope stress triggered by unfavorable environmental conditions cause the initiation of flocculation in E. coli.


Assuntos
Membrana Celular/metabolismo , Parede Celular/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Proteínas Quinases/metabolismo , Tolerância ao Sal/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Citosol/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Floculação , Proteínas de Membrana/metabolismo , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , Mutação Puntual , Proteínas Quinases/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética
15.
J Biol Chem ; 295(52): 18256-18265, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33109614

RESUMO

Peptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division, the machinery responsible for PG synthesis localizes mid-cell, at the septum, under the control of a multiprotein complex called the divisome. In Escherichia coli, septal PG synthesis and cell constriction rely on the accumulation of FtsN at the division site. Interestingly, a short sequence of FtsN (Leu75-Gln93, known as EFtsN) was shown to be essential and sufficient for its functioning in vivo, but what exactly this sequence is doing remained unknown. Here, we show that EFtsN binds specifically to the major PG synthase PBP1b and is sufficient to stimulate its biosynthetic glycosyltransferase (GTase) activity. We also report the crystal structure of PBP1b in complex with EFtsN, which demonstrates that EFtsN binds at the junction between the GTase and UB2H domains of PBP1b. Interestingly, mutations to two residues (R141A/R397A) within the EFtsN-binding pocket reduced the activation of PBP1b by FtsN but not by the lipoprotein LpoB. This mutant was unable to rescue the ΔponB-ponAts strain, which lacks PBP1b and has a thermosensitive PBP1a, at nonpermissive temperature and induced a mild cell-chaining phenotype and cell lysis. Altogether, the results show that EFtsN interacts with PBP1b and that this interaction plays a role in the activation of its GTase activity by FtsN, which may contribute to the overall septal PG synthesis and regulation during cell division.


Assuntos
Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , Ligação Proteica , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética
16.
Biochem Biophys Res Commun ; 533(4): 1393-1399, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33092792

RESUMO

Cytosolic carboxypeptidases (CCPs) comprise a unique subfamily of M14 carboxypeptidases and are erasers of the reversible protein posttranslational modification- polyglutamylation. Potent inhibitors for CCPs may serve as leading compounds targeting imbalanced polyglutamylation. However, no efficient CCP inhibitor has yet been reported. Here, we showed that 2-phosphonomethylpentanedioic acid (2-PMPA), a potent inhibitor of the distant M28 family member glutamate carboxypeptidase II (GCPII), rather than the typical M14 inhibitor 2-benzylsuccinic acid, could efficiently inhibit CCP activities. 2-PMPA inhibited the recombinant Nna1 (a.k.a. CCP1) for hydrolyzing a synthetic peptide in a mixed manner, with Ki and Ki' being 0.11 µM and 0.24 µM respectively. It inhibited Nna1 for deglutamylating tubulin, the best-known polyglutamylated protein, with an IC50 of 0.21 mM. Homology modeling predicted that the R-form of 2-PMPA is more favorable to bind Nna1, unlike that GCPII prefers to S-form. This work for the first time identified a potent inhibitor for CCP family.


Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Compostos Organofosforados/farmacologia , Inibidores de Proteases/farmacologia , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Citosol/enzimologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/metabolismo , Glutaratos/farmacologia , Cinética , Simulação de Acoplamento Molecular , Compostos Organofosforados/química , Inibidores de Proteases/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Ácido Succínico/farmacologia
17.
Sci Rep ; 10(1): 6280, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286439

RESUMO

Lipid II precursor and its processing by a flippase and peptidoglycan polymerases are considered key hot spot targets for antibiotics. We have developed a fluorescent anisotropy (FA) assay using a unique and versatile probe (fluorescent lipid II) and monitored direct binding between lipid II and interacting proteins (PBP1b, FtsW and MurJ), as well as between lipid II and interacting antibiotics (vancomycin, nisin, ramoplanin and a small molecule). Competition experiments performed using unlabelled lipid II, four lipid II-binding antibiotics and moenomycin demonstrate that the assay can detect compounds interacting with lipid II or the proteins. These results provide a proof-of-concept for the use of this assay in a high-throughput screening of compounds against all these targets. In addition, the assay constitutes a powerful tool in the study of the mode of action of compounds that interfere with these processes. Interestingly, FA assay with lipid II probe has the advantage over moenomycin based probe to potentially identify compounds that interfere with both donor and acceptor sites of the aPBPs GTase as well as compounds that bind to lipid II. In addition, this assay would allow the screening of compounds against SEDS proteins and MurJ which do not interact with moenomycin.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Polarização de Fluorescência/métodos , Proteínas de Membrana/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Depsipeptídeos/metabolismo , Ensaios de Triagem em Larga Escala , Nisina/metabolismo , Ligação Proteica , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo , Vancomicina/metabolismo
18.
J Biol Chem ; 295(21): 7529-7543, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32253235

RESUMO

The global incidence of the sexually transmitted disease gonorrhea is expected to rise due to the spread of Neisseria gonorrhoeae strains with decreased susceptibility to extended-spectrum cephalosporins (ESCs). ESC resistance is conferred by mosaic variants of penicillin-binding protein 2 (PBP2) that have diminished capacity to form acylated adducts with cephalosporins. To elucidate the molecular mechanisms of ESC resistance, we conducted a biochemical and high-resolution structural analysis of PBP2 variants derived from the decreased-susceptibility N. gonorrhoeae strain 35/02 and ESC-resistant strain H041. Our data reveal that mutations both lower affinity of PBP2 for ceftriaxone and restrict conformational changes that normally accompany acylation. Specifically, we observe that a G545S substitution hinders rotation of the ß3 strand necessary to form the oxyanion hole for acylation and also traps ceftriaxone in a noncanonical configuration. In addition, F504L and N512Y substitutions appear to prevent bending of the ß3-ß4 loop that is required to contact the R1 group of ceftriaxone in the active site. Other mutations also appear to act by reducing flexibility in the protein. Overall, our findings reveal that restriction of protein dynamics in PBP2 underpins the ESC resistance of N. gonorrhoeae.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência às Cefalosporinas , Neisseria gonorrhoeae/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Acetilação/efeitos dos fármacos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Ceftriaxona/farmacologia , Mutação de Sentido Incorreto , Neisseria gonorrhoeae/genética , Estrutura Secundária de Proteína , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética
19.
Amino Acids ; 52(3): 487-497, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32108264

RESUMO

Bacteria produce various D-amino acids, including non-canonical D-amino acids, to adapt to environmental changes and overcome a variety of threats. These D-amino acids are largely utilized as components of peptidoglycan, and they promote peptidoglycan remodeling and biofilm disassembly. The biosynthesis, maturation, and recycling of peptidoglycan are catalyzed by penicillin-binding proteins (PBPs). However, although non-canonical D-amino acids are known to be incorporated into peptidoglycan, the maturation and recycling of peptidoglycan containing such residues remain uncharacterized. Therefore, we investigated whether PBP4 and PBP5, low molecular mass (LMM) PBPs from Escherichia coli and Bacillus subtilis, are involved in these events of peptidoglycan metabolism. Enzyme assays using p-nitroaniline (pNA)-derivatized D-amino acids and peptidoglycan-mimicking peptides revealed that PBP4 and PBP5 from both species have peptidase activity toward substrates containing D-Asn, D-His, or D-Trp. These D-amino acids slowed the growth of dacA- or dacB-deficient E. coli (∆dacA or ∆dacB) relative to the wild-type strain. Additionally, these D-amino acids affected biofilm formation by the ∆dacB strain. Collectively, PBP4 and PBP5 are involved in the cleavage of peptidoglycan containing non-canonical D-amino acids, and these properties affect growth and biofilm formation.


Assuntos
Aminoácidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Aminoácidos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética
20.
Microb Pathog ; 137: 103742, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31513897

RESUMO

Low molecular mass penicillin binding proteins (LMM PBP) are bacterial enzymes involved in the final steps of peptidoglycan biosynthesis. In Escherichia coli, most LMM PBP exhibit dd-carboxypeptidase activity, are not essential for growth in routine laboratory media, and contributions to virulent phenotypes remain largely unknown. The Francisella tularensis Schu S4 genome harbors the dacD gene (FTT_1029), which encodes a LMM PBP with homology to PBP6b of E. coli. Disruption of this locus in the fully virulent Schu S4 strain resulted in a mutant that could not grow in Chamberlain's Defined Medium and exhibited severe morphological defects. Further characterization studies demonstrated that the growth defects of the dacD mutant were pH-dependent, and could be partially restored by growth at neutral pH or fully restored by genetic complementation. Infection of murine macrophage-like cells showed that the Schu S4 dacD mutant is capable of intracellular replication. However, this mutant was attenuated in BALB/c mice following intranasal challenge (LD50 = 603 CFU) as compared to mice challenged with the parent (LD50 = 1 CFU) or complemented strain (LD50 = 1 CFU). Additionally, mice that survived infection with the dacD mutant showed significant protection against subsequent challenge with the parent strain. Collectively, these results indicate that the DacD protein of F. tularensis is essential for growth in low pH environments and virulence in vivo. These results also suggest that a PBP mutant could serve as the basis of a novel, live attenuated vaccine strain.


Assuntos
Francisella tularensis/enzimologia , Francisella tularensis/patogenicidade , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Tularemia/imunologia , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Linhagem Celular , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Francisella tularensis/genética , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas de Ligação às Penicilinas , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Tularemia/microbiologia , Vacinas Atenuadas/imunologia , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA